Laboratory experiments suggest that a layer of "dark hydrogen" lies between the atmospheres and cores of Jupiter and other gas giants. |
Tuesday, 28 June 2016
Mysterious 'Dark Hydrogen' May Lurk Within Giant Planets
Sunday, 26 June 2016
Silicate Stardust Traces Histories of Dust in the Galaxy
NASA scientists are revealing the histories of dust particles from dying stars that roved the Galaxy for millions of years before the sun and planets formed. These stardust grains survived the harsh environment of deep space and were found in meteorites on Earth.
During their journeys, these stardust grains were bombarded in space by high-energy cosmic radiation and shock waves from exploding stars, or supernovae. Scientists in the Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston used state-of-the-art instrumentation to study the histories of these ancient silicate stardust grains.
A paper on the team’s findings has been published in The Astrophysical Journal.
The coordinated laboratory study of these remnants of stars that were once light years away from us has revealed detailed information on the conditions in stellar atmospheres and in the Galaxy. “These tiny stardust grains reveal incredible details of their parent stars, their journey through the Galaxy and the earliest history of the Solar System. Astrophysics in the laboratory is a powerful complement to the traditional means of studying the cosmos with telescopes,” said co-author Scott Messenger, NASA senior astromaterials and mission scientist.
The isotope signatures and atomic-scale structures were determined for individual grains of stardust that are smaller than 1/1000 of a millimeter in size. The small size of these grains makes these coordinated analyses especially challenging.
The silicate stardust grains were discovered by measuring their exotic isotopic compositions with the use of a high spatial resolution ion probe known as the NanoSIMS 50L. The isotopic compositions of stardust grains were imparted by nuclear reactions deep within the hearts of their parent stars and can be orders of magnitude different from the compositions of grains that formed in the Solar System. In particular, the abundance ratios of different isotopes of oxygen in silicate stardust are diagnostic of the type of star from which they came.
“About 1 in every 5,000 silicate grains from the meteorites we studied was produced by another star before our Solar System formed. After analyzing millions of silicate grains, we identified bona fide silicate stardust from three major dust producers in the Galaxy: red giant stars, explosive supernovae, and novae,” said the leading author, Dr. Ann Nguyen, Jacobs cosmochemist at NASA’s Johnson Space Center.
“The next step was to determine the chemistry and structure of these grains in order to answer questions such as, under what conditions did these grains form? How different were these conditions in stellar outflows compared to more violent stellar explosions? What types of environments did the grains encounter on their journey to our Solar System?”
These questions were addressed by carefully producing cross-sections of 9 silicate stardust grains. These cross-sections were a mere ~70 nanometers thick and were analyzed by co-author Lindsay Keller using another powerful instrument, the transmission electron microscope, or TEM.
“Coordinated analyses of these grains is a powerful approach. The isotopic measurements reveal that these grains originated from very different types of stars. Combining this information with the TEM observations provides us with unique insights into the physical and chemical conditions that existed when the grains formed,” said Keller, NASA planetary scientist.
Many of the silicates were amorphous with a wide range of chemical compositions. The study also uncovered silicate crystals from red giants that likely formed at higher temperatures than the amorphous grains.
Evidence for radiation processing in space was found in two of the stardust grains studied, one from a red giant star and one from a supernova. Both of the grains have the same chemical composition consistent with the mineral enstatite. One grain is completely amorphous while the other retains a crystalline core.
"The chemical composition of the grains indicates they originally formed as crystals, but these grains later encountered high energy radiation in space sufficient to destroy their crystal structures. Evidence of this radiation exposure is extremely rare in silicate stardust. Most of the stardust grains that we studied seem to have escaped such processing,”
For More - Click This!
Scientists Discover Unexpected Mineral on Mars
This low-angle self-portrait of NASA's Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called "Buckskin." |
Scientists have discovered an unexpected mineral in a rock sample at Gale Crater on Mars, a finding that may alter our understanding of how the planet evolved.
NASA’s Mars Science Laboratory rover, Curiosity, has been exploring sedimentary rocks within Gale Crater since landing in August 2012. On sol 1060 (the number of Martian days since landing), the rover collected powder drilled from rock at a location named “Buckskin.” Analyzing data from an X-ray diffraction instrument on the rover that identifies minerals, scientists detected significant amounts of a silica mineral called tridymite.
This detection was a surprise to the scientists, because tridymite is generally associated with silicic volcanism, which is known on Earth but was not thought to be important or even present on Mars. Tridymite requires high temperatures and high silica concentrations to form, conditions which most typically are found in association with silicic volcanism.
The discovery of tridymite might induce scientists to rethink the volcanic history of Mars, suggesting that the planet once had explosive volcanoes that led to the presence of the mineral.
Scientists in the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston led the study. A paper on the team’s findings has been published in the Proceedings of the National Academy of Sciences.
“On Earth, tridymite is formed at high temperatures in an explosive process called silicic volcanism. Mount St. Helens, the active volcano in Washington State, and the Satsuma-Iwojima volcano in Japan are examples of such volcanoes. The combination of high silica content and extremely high temperatures in the volcanoes creates tridymite,” said Richard Morris, NASA planetary scientist at Johnson and lead author of the paper. “The tridymite was incorporated into ‘Lake Gale’ mudstone at Buckskin as sediment from erosion of silicic volcanic rocks.”
The paper also will stimulate scientists to re-examine the way tridymite forms. The authors examined terrestrial evidence that tridymite could form at low temperatures from geologically reasonable processes and not imply silicic volcanism. They found none. Researchers will need to look for ways that it could form at lower temperatures.
“I always tell fellow planetary scientists to expect the unexpected on Mars,” said Doug Ming, ARES chief scientist at Johnson and co-author of the paper. “The discovery of tridymite was completely unexpected. This discovery now begs the question of whether Mars experienced a much more violent and explosive volcanic history during the early evolution of the planet than previously thought.”
For More - Click This!
Monday, 20 June 2016
Rare Newborn Planet May Be the Youngest Ever Detected
A distant, Neptune-size planet 500 light-years from Earth appears to be the youngest fully formed exoplanet ever found crossing its star, raising questions about how it formed so close, so quickly.
Researchers first found the planet, which whisks around its star every five days, using the Kepler space telescope currently orbiting Earth. Its star is only 5 million to 10 million years old, suggesting that the planet is a similar age — incredibly young, on a cosmic scale. Researchers said it was the youngest planet spotted fully formed around a distant star, and it is nearly 10 times closer to its star than Mercury is to the sun.
"Our Earth is roughly 4.5 billion years old," Trevor David, a graduate student researcher at the California Institute of Technology and lead author of the new study, said in a statement. "By comparison, the planet K2-33b is very young. You might think of it as an infant."
Most of the more than 3,000 confirmed planets around other stars orbit planets more than 1 billion years old, NASA Jet Propulsion Lab officials said in the statement — so this young star and planet pair offers a rare opportunity to see earlier stages of planet development.
Kepler detected the planet during its K2 mission by catching the star dimming and brightening periodically as the planet passed in front of it — a detection process known as the transit method. Researchers used data from the Keck Observatory in Hawaii and NASA's Spitzer Space Telescope, in orbit around Earth, to verify that the darkening was caused by the planet and to see that the star is surrounded by a thin layer of debris.
That layer is likely the remnant of a thick disk of debris that encircled the star when it first formed — the raw material from which planetary systems form. In this case, the thin disk suggests the star is near the end of its planet-forming days.
"Initially, this material may obscure any forming planets, but after a few million years, the dust starts to dissipate," Ann Marie Cody, a postdoctoral researcher at NASA's Ames Research Center in California, said in the statement. "It is during this time window that we can begin to detect the signatures of youthful planets in K2."
Combined with its youth, the planet's close proximity to its star is a puzzling feature of the newly found system, the researchers said. Some astronomical theories suggest that a planet of its mass would have to form farther out and slowly migrate inward over hundreds of millions of years, but the star is too young for a process that long to have occurred, the researchers said in the statement.
Instead, it must have either migrated much more quickly, in a process called disk migration powered by the orbiting disk of gas and debris, or formed right at the spot that researchers see it in now.
"After the first discoveries of massive exoplanets on close orbits about 20 years ago, it was immediately suggested that they could absolutely not have formed there," David said. "But in the past several years, some momentum has grown for in situ formation theories [that the planet could form right where it is], so the idea is not as wild as it once seemed."
"The question we are answering is, did those planets take a long time to get into those hot orbits, or could they have been there from a very early stage? We are saying, at least in this one case, that they can indeed be there at a very early stage," he added.
The planet K2-33b is one of two newborn-planet announcements published in today's issue of Nature. The other newborn planet, which orbits a 2-million-year-old star called V830 Tau located 430 light-years away, appears to be a giant planet near the size of Jupiter sitting in an orbit one-twentieth the distance from Earth to the sun. The researchers identified the planet by watching its star wobble back and forth periodically as the massive planet orbited. If that planet formed farther outward and migrated closer, it would have had to rush in at a very early stage of its formation.
Dark Matter May Be Made of Primordial Black Holes
This image shows the infrared background, or the infrared light not associated with known sources. It may be left over from the universe's first luminous objects, including stars. |
Alexander Kashlinsky, an astronomer at the NASA Goddard Space Flight Center in Maryland, thinks that black holes that formed soon after the Big Bang can perfectly explain the observations of gravitational waves, or ripples in space-time, made by the Laser Interferometer Gravitational-Wave Observatory (LIGO) last year, as well as previous observations of the early universe.
If Kashlinsky is correct, then dark matter might be composed of these primordial black holes, all galaxies might be embedded within a vast sphere of black holes, and the early universe might have evolved differently than scientists had thought. [Watch the LIGO documentary "LIGO, A Passion for Understanding"]
In 2005, Kashlinsky and his colleagues used NASA's Spitzer Space Telescope to explore the background glow of infrared light found in the universe. Because light from cosmic objects takes a finite amount of time to travel through space, astronomers on Earth see distant objects the way those objects looked in the past. Kashlinsky and his group wanted to look toward the early universe, beyond where telescopes can pick up individual galaxies.
"Suppose you look at New York [City] from afar," Kashlinsky told Space.com. "You cannot see individual lampposts or buildings, but you can see this cumulative diffuse light that they produce."
When the researchers removed all of the light from the known galaxies throughout the universe, they could still detect excess light — the background glow from the first sources to illuminate the universe more than 13 billion years ago.
Then, in 2013, Kashlinsky and his colleagues used NASA's Chandra X-ray Observatory to explore the background glow in a different part of the electromagnetic spectrum: X-rays. To their surprise, the patterns within the infrared background perfectly matched the patterns within the X-ray background.
"And the only sources that would be able to produce this in both infrared and X-rays are black holes," Kashlinsky said. "It never crossed my mind at that time that these could be primordial black holes."
Then, there was the LIGO detection. On Sept. 14, 2015, the observatory made the first-ever direct detection of gravitational waves — cosmic ripples in the fabric of space-time itself — that had been produced by a pair of colliding black holes. It marked the beginning of a new era of discovery — one in which astronomers could collect these unique signals created by powerful astronomical events and, for the first time, directly detect black holes (as opposed to seeing the illuminated material around black holes).
But Simeon Bird, an astronomer at Johns Hopkins University, speculated that the discovery could be even more significant. Bird suggested that the two black holes detected by LIGO could be primordial.
An image of the sky in infrared light, taken by NASA's Spitzer Space Telescope. The image shows the same patch of sky as seen in the image above, but without the known infrared sources removed. |
Primordial black holes aren't formed from the collapse of a dead star (the more commonly-known mechanism for black hole formation that takes place relatively late in the universe's history). Instead, primordial black holes formed soon after the Big Bang when sound waves radiated throughout the universe. Areas where those sound waves are densest could have collapsed to form the black holes.
If that thought makes your head spin a little, just think about spinning pizza dough into a disc. "After a while, you will notice it has these holes in the texture of the pizza dough," Kashlinsky said. "It's the same with space-time," except those holes are primordial black holes.
For now, these primordial black holes remain hypothetical. But Kashlinsky, impressed by Bird's suggestion, took the hypothesis a step further. In his new paper, published May 24 in The Astrophysical Journal Letters, Kashlinsky looked at the consequences that these primordial black holes would have had on the evolution of the cosmos. (Bird is not the first scientist to suggest that dark matter might be made of black holes, although not all of those ideas involve primordial black holes.)
For the first 500 million years of the universe's history, dark matter collapsed into clumps called halos, which provided the gravitational seeds that would later enable matter to accumulate and form the first stars and galaxies, Kashlinsky said. But if that dark matter was composed of primordial black holes, this process would have created far more halos.
Kashlinsky thinks this process could explain both the excess cosmic infrared background and the excess cosmic X-ray background that he and his colleagues observed several years ago.
The infrared glow would come from the earliest stars that formed within the halos. Although stars radiate optical and ultraviolet light, the expansion of the universe naturally stretches that light so that the first stars will appear, to astronomers on Earth, to give off an infrared light. Even without the extra halos, early stars could generate an infrared glow, but not to the extent that Kashlinsky and his colleagues observed, he said.
The gas that created those stars would also have fallen onto the primordial black holes, heating up to high enough temperatures that it would have sparked X-rays. While the cosmic infrared background can be explained — albeit to a lesser extent — without the addition of primordial black holes, the cosmic x-ray background cannot. The primordial black holes connect the two observations together.
"Everything fits together remarkably well," Kashlinsky said.
Occasionally, those primordial black holes would have come close enough to start orbiting each other (what's known as a binary system). Over time, those two black holes would spiral together and radiate gravitational waves, potentially like the ones detected by LIGO. But more observations of black holes are needed to determine if these objects are primordial, or formed later in the universe's history.
Sunday, 12 June 2016
Parallel Universes: Theories & Evidence
Our universe may live in one bubble that is sitting in a network of bubble universes in space. |
Is our universe unique? From science fiction to science fact, there is a proposal out there that suggests that there could be other universes besides our own, where all the choices you made in this life played out in alternate realities. So, instead of turning down that job offer that took you from the United States to China, the alternate universe would show the outcome if you decided to venture to Asia instead.
The idea is pervasive in comic books and movies. For example, in the 2009 "Star Trek" reboot, the premise is that the Kirk and Spock portrayed by Chris Pine and Zachary Quinto are in an alternate timeline apart from the William Shatner and Leonard Nimoy versions of the characters.
The concept is known as a "parallel universe," and is a facet of the astronomical theory of the multiverse. There actually is quite a bit of evidence out there for a multiverse. First, it is useful to understand how our universe is believed to have come to be.
Arguing for a multiverse -
Around 13.7 billion years ago, simply speaking, everything we know of in the cosmos was an infinitesimal singularity. Then, according to theBig Bang theory, some unknown trigger caused it to expand and inflate in three-dimensional space. As the immense energy of this initial expansion cooled, light began to shine through. Eventually, the small particles began to form into the larger pieces of matter we know today, such as galaxies, stars and planets.
One big question with this theory is: are we the only universe out there. With our current technology, we are limited to observations within this universe because the universe is curved and we are inside the fishbowl, unable to see the outside of it (if there is an outside.)
There are at least five theories why a multiverse is possible -
1. We don't know what the shape of space-time is exactly. One prominent theory is that it is flat and goes on forever. This would present the possibility of many universes being out there. But with that topic in mind, it's possible that universes can start repeating themselves. That's because particles can only be put together in so many ways. More about that in a moment.
2. Another theory for multiple universes comes from "eternal inflation." Based on research from Tufts University cosmologist Alexander Vilenkin, when looking at space-time as a whole, some areas of space stop inflating like the Big Bang inflated our own universe. Others, however, will keep getting larger. So if we picture our own universe as a bubble, it is sitting in a network of bubble universes of space. What's interesting about this theory is the other universes could have very different laws of physics than our own, since they are not linked.
3. Or perhaps multiple universes can follow the theory of quantum mechanics (how subatomic particles behave), as part of the "daughter universe" theory. If you follow the laws of probability, it suggests that for every outcome that could come from one of your decisions, there would be a range of universes — each of which saw one outcome come to be. So in one universe, you took that job to China. In another, perhaps you were on your way and your plane landed somewhere different, and you decided to stay. And so on.
4. Another possible avenue is exploring mathematical universes, which, simply put, explain that the structure of mathematics may change depending in which universe you reside. "A mathematical structure is something that you can describe in a way that's completely independent of human baggage," said theory-proposer Max Tegmark of the Massachusetts Institute of Technology, as quoted in the 2012 article. "I really believe that there is this universe out there that can exist independently of me that would continue to exist even if there were no humans."
5. And last but not least as the idea of parallel universes. To go back to the idea that space-time is flat, the number of possible particle configurations in multiple universes would be limited to 10^10^122 distinct possibilities, to be exact. So, with an infinite number of cosmic patches, the particle arrangements within them must repeat — infinitely many times over. This means there are infinitely many "parallel universes": cosmic patches exactly the same as ours (containing someone exactly like you), as well as patches that differ by just one particle's position, patches that differ by two particles' positions, and so on down to patches that are totally different from ours.
Arguing against a parallel universe -
Not everyone agrees with the parallel universe theory, however. A 2015 article on Medium by astrophysicist Ethan Siegal agreed that space-time could go on forever in theory, but said that there are some limitations with that idea.
The key problem is the universe is just under 14 billion years old. So our universe's age itself is obviously not infinite, but a finite amount. This would (simply put) limit the number of possibilities for particles to rearrange themselves, and sadly make it less possible that your alternate self did get on that plane after all to see China.
Also, the expansion at the beginning of the universe took place exponentially because there was so much "energy inherent to space itself," he said. But over time, that inflation obviously slowed — those particles of matter created at the Big Bang are not continuing to expand, he pointed out. Among his conclusions: that means that multiverses would have different rates of inflation and different times (longer or shorter) for inflation. This decreases the possibilities of universes similar to our own.
"Even setting aside issues that there may be an infinite number of possible values for fundamental constants, particles and interactions, and even setting aside interpretation issues such as whether the many-worlds-interpretation actually describes our physical reality," Siegal said, "the fact of the matter is that the number of possible outcomes rises so quickly — so much faster than merely exponentially — that unless inflation has been occurring for a truly infinite amount of time, there are no parallel universes identical to this one."
But rather than seeing this lack of other universes as a limitation, Siegal instead takes the philosophy that it shows how important it is to celebrate being unique. He advises to make the choices that work for you, which "leave you with no regrets." That's because there are no other realities where the choices of your dream self play out; you, therefore, are the only person that can make those choices happen.
For More - Click This!
Friday, 10 June 2016
UFO Hunter ‘Discovers’ Alien Skull On Mars — Proof Of Ancient Humanoid Mars Civilization?
A UFO hunter has announced the latest bizarre “discovery” in the field of Mars anomaly research — a humanoid alien skull spotted in an image of Martian terrain captured by NASA’s Curiosity rover.
The discovery of an alien humanoid skull on the Red Planet by NASA’s Curiosity rover, according to UFO hunters, offers clinching evidence of advanced ancient humanoid civilization on Mars.
UFO hunter Paranormal Crucible announced the discovery in a video uploaded to YouTube on June 6. According to the prolific Mars anomaly hunter, the discovery was made in an image taken recently by Curiosity rover’s Mastcam: Left (MAST_LEFT) on Sol 1352 (2016-05-26 05:16:25 UTC). The NASA image, according to Paranormal Crucible, who describes his YouTube channel as “Home Of The Bizarre,” shows a humanoid alien skull that resembles a “Sasquatch skull.”
Paranormal Crucible observes that the strange object “appears to resemble a large skull, obviously alien in nature.”
“Could it be the remains of a Sasquatch or a bizarre Martian creature?” the UFO hunter wonders.
According to UFO blogger Scott C. Waring, the object is evidently an ancient skull representing one of several alien species that thrived on Mars before Mars civilization was wiped out in a horrific nuclear holocaust millions of years ago.
The theory that ancient Mars civilization was wiped out in a nuclear holocaust is championed by Dr. John Brandenburg, theoretical plasma physicist and expert in propulsion technologies, who holds a PhD from the University of California at Davis.
He elaborated the strange theory in a controversial paper, titled, “Evidence of Massive Thermonuclear Explosions in Mars Past, The Cydonian Hypothesis and Fermi’s Paradox.”
The paper was first presented at the 2014 Annual Fall meeting of the American Physical Society, Prairie Section in Monmouth, Illinois.
He also presented the theory in March 2015, at the 46th Lunar and Planetary Science Conference in Houston, Texas, theInquisitr reported.
He claimed there is evidence that two ancient Mars civilizations — Cydonia and the Utopia — were wiped out in a series of massive thermonuclear weapons explosions set off by hostile alien invaders.
Commenting further on the alleged discovery of an alien skull on Mars, UFO blogger Scott Waring notes that “the skull is big, about the same size as a human skull.”
“I don’t believe it is a helmet,” he adds. “A helmet would not have a perfectly formed nose area. Also the two ridges along one side are similar to ridges along bones found on Earth.”
Paranormal Crucible’s announcement of the discovery of a humanoid alien skull on Mars sparked lively discussions on multiple alien and UFO conspiracy theory forums.
Some alien hunters agreed with Waring and Paranormal Crucible that the object was likely an alien skull. But some insisted it was more likely an ancient military helmet.
A few who could not make up their minds suggested that NASA operators should move the rover closer to the object for a clearer view and maybe even use the rover’s robotic arm to tip it over.
“I believe it is a helmet; petrified of course,” an alien enthusiast said.
“We really need the rover to move over there and get a closer look,” another said, “even using the rover arm to tip it over to check it out would help.”
“It looks like a helmet to me,” a third commented in support of the first enthusiast.
“I would say it looks more like a skull than a helmet,” a fourth countered.
One enthusiast thought it “looks more like the head of a statue, rather than a skull. It reminds me of those old Greek style bronze statues where the eyes are hollow.”
But others found the evidence tantalizingly inconclusive.
“I don’t know how true this maybe, but it’s interesting none the less,” an enthusiast commented.
Uncertainty whether the object was a skull or a helmet and the unlikelihood of getting NASA to move Curiosity rover closer to inspect the object sparked protests and accusations of cover-up against NASA.
“We just want the truth! It’s not very hard?” a conspiracy theorist protested.
In the wacky world of Mars anomaly research, an alien skull is an unremarkable discovery.
Probably the wackiest discovery ever by Mars anomaly hunters was a live chicken on Mars (see footage above).
Less remarkable was the discovery of a fossil fish on Mars in April.
Intrepid UFO hunters have found hundreds of crashed alien flying saucers and drones on the Red Planet.
Others have found conifer-like trees growing on the Red Planet. One alien hunter found a “weaponized robotic machine” roaming the Martian surface earlier in the week.
Some time ago, a creative UFO hunter found an alien handgun left on Mars by a careless alien visitor.
For more Visit This - Click Here!
Subscribe to:
Posts (Atom)